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Abstract. This paper is concerned with numerical methods for solving a semi-infinite programming
problem. We reformulate the equations and nonlinear complementarity conditions of the first order
optimality condition of the problem into a system of semismooth equations. By using a perturbed
Fischer–Burmeister function, we develop a smoothing Newton method for solving this system of
semismooth equations. An advantage of the proposed method is that at each iteration, only a sys-
tem of linear equations is solved. We prove that under standard assumptions, the iterate sequence
generated by the smoothing Newton method converges superlinearly/quadratically.
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1. Introduction

Semi-infinite programming (SIP) is an exciting part of mathematical programming.
It has strong practical backgrounds in approximation theory, optimal control and
numerous engineering problems, etc. [17, 29]. For example, the enveloped con-
strained filter design in information technology requires that the response lies in a
pre-prescribed envelope at all times [34]. This leads to an SIP problem.
Let f � Rn → R, g � Rn+m → R be twice continuously differentiable, and

V ⊂ Rm be compact. Consider the following SIP problem

min�f 	x�� x ∈ X�� (1)

where X = �x ∈ �n � g	x� v� � 0� ∀v ∈ V�. If V is finite, the problem (1) is a
finite optimization problem and is usually called a nonlinear programming (NLP)
problem in the literature. One of the important methods for solving an SIP problem
is the discretization method [29, 33]. In a discretization method, the infinite set V
is approximated by a sequence of finite subsets �Vk� such that Vk becomes denser
and denser in V as k goes to the infinity. Then the SIP problem is approximated by
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a sequence of NLP problems

min�f 	x�� x ∈ Xk�� (2)

where Xk = �x ∈ �n � g	x� v� � 0� ∀v ∈ Vk�, such that the solution xk of (2), as
hoped, converges to a solution of (1). At each iteration of a discretization method,
an NLP problem is solved. Therefore, discretization methods especially suit for
solving problems with a solution at which g	x∗� ·� is (almost) constant on V or on
a part of V . The almost constant property is a feature of some kinds of Chebyshev
approximation problems.
However, in a general discretization method, the subset Vk ⊂ V must be suf-

ficiently dense in V when k is sufficiently large. This makes the algorithm com-
putationally very expensive. The time needed to verify feasibility with respect to
(2) and to solve this problem increases dramatically as the cardinality of Vk grows.
To reduce the computational cost of discretization methods, a so-called reduction
technique [?] was introduced which results in reduction based methods. Let the set
V be specified by

V = �cj	v� � 0� j = 1� � � � � q�� (3)

where cj � Rm → R, j = 1� � � � � q are twice continuously differentiable. The
process of a typical reduction based method for solving an SIP problem with V
specified by (3) is as follows. At iteration k, compute all local minimizers of the
problem

min�−g	xk� v�� v ∈ V�� (4)

Denote by Sk the set of all minimizers of (4). Solve the problem

min�f 	x�� g	x� v� � 0� ∀v ∈ Sk� (5)

to get the next iterate xk+1. Problems (4) and (5) are called outer and inner prob-
lems, respectively. Under some regular conditions [29], it has been proved that
the set Sk is finite and hence the problem (5) reduces to a nonlinear programming
problem. The regular conditions include:

(i) For every k and any v ∈ V , �cj	v�, j ∈ I	v�
�= �j � cj	v� = 0� is linearly

independent.
(ii) At every stationary point of (4), the strong second order sufficiency conditions

and the strictly complementarity condition hold.

Reduction based and discretization SQP type methods and trust region type
methods have been studied by some authors [4, 13, 32]. Under certain conditions,
these methods possess global convergence property. However, finding all local
minimizers of (2) is very difficult and very expensive in computation. Discussion
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on the difficulties and numerical labor in finding all local minimizers of (2) can be
found in [28].
In this paper, from a different point of view, we develop a new kind of iterative

methods for finding a KKT point of an SIP problem. Let

V 	x� = �v ∈ V � g	x� v� = 0��

It is well-known [31] that if x is a local minimum of the SIP problem (1), and if
the extended Mangasarian–Fromovitz constraint qualification (EMFCQ) holds at
x, i.e., there is a vector h ∈ �n such that

�xg	x� v�
Th < 0

for all v ∈ V 	x�. Then there are p positive numbers ui and p vectors vi ∈ V 	x�
such that

�f	x� +
p∑

i=1
ui�xg	x� v

i� = 0� (6)

with p � n. If the EMFCQ does not hold, an example given in [27] shows that
the optimality condition (6) may not hold. We may also explicitly write out the
conditions x ∈ X and vi ∈ V 	x� as

g	x� v� � 0� ∀v ∈ V � (7)

and for i = 1� � � � � p,

ui > 0� g	x� vi� = 0� (8)

Equations and inequalities (6), (7) and (8) are called the KKT system of the SIP
problem (1). In a KKT system, x is called a stationary point of the SIP problem,
and u ∈ �p and vi for i = 1� � � � � p are called its Lagrange multiplier and
attainers respectively.
The KKT systems (6), (7) and (8) look like the KKT system of nonlinear

programming problem

min�f 	x�� g	x� vi� � 0� i = 1� � � � � p�� (9)

However, due to the restriction vi ∈ V 	x� and the fact that p depends on x,
the solution of (6), (7) and (8) is much more complicated than that of a general
nonlinear programming problem. To develop numerical methods, we then analyze
the restriction vi ∈ V 	x�, i = 1� � � � � p.
By the definition of V 	x�, the condition vi ∈ V 	x�, i = 1� � � � � p means that

vi, i = 1� � � � � p are global minimizers of the NLP problem

min�−g	x� v� � c	v� � 0�� (10)
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It is well-known that if a constraint qualification (CQ) for the NLP problem (10)
holds, then there are p auxiliary Lagrange multipliers wi ∈ �q for i = 1� � � � � p
such that for i = 1� � � � � p,

−�vg	x� v
i� +

q∑
j=1

wi
j�cj	v

i� = 0�

wi
j � 0� cj	v

i� � 0� (11)

wi
jcj	v

i� = 0� for j = 1� � � � � q�

Well-known CQ’s for NLP include the linear independence CQ (LICQ) [15], the
Slater CQ (SLCQ) [15], the Mangasarian–Fromovitz CQ (MFCQ) [15], the con-
stant rank CQ (CRCQ) [11], etc. [26].
We call an x ∈ �n with u ∈ �p, vi ∈ �m and wi ∈ �q , for i = 1� � � � � p,

p � n, satisfying (6), (8) and (11) a substationary point of the SIP problem.
System (11) is a first order necessary condition for vi, i = 1� � � � � p to be local

solutions of (10). If some second order sufficiency conditions hold for (10) at vi for
i = 1� � � � � p, then vi, i = 1� � � � � p are local solutions of (10). Note that system
(11) is a system consisting of finitely many equations and inequalities. Thus, the
conditions (6) and (8) together with vi ∈ V 	x�, i = 1� � � � � p are transformed into
the following system


�f	x� +∑p
i=1 ui�xg	x� v

i� = 0�
ui > 0� g	x� vi� = 0� for i = 1� � � � � p�

−�vg	x� v
i� +∑q

j=1 w
i
j�cj	v

i� = 0� for i = 1� � � � � p�

wi
j � 0� cj	v

i� � 0� for i = 1� � � � � p j = 1� � � � � q�
wi

jcj	v
i� = 0� for i = 1� � � � � p j = 1� � � � � q�

(12)

It is then desirable to develop numerical methods on the basis of (12). However
we realize that in order to prove the nonsingularity conditions required by our
algorithm, we need to modify the above system accordingly. Since ui > 0 for
i = 1� 2� · · · � p, we may multiply the third equation in (12) by ui and then further
replace uiw

i
j by wi

j for i = 1� 2� · · · � p; j = 1� 2� · · · � q. Thus system (12) is
equivalent to the following:


�f	x� +∑p
i=1 ui�xg	x� v

i� = 0�
ui > 0� g	x� vi� = 0� for i = 1� � � � � p�

−ui�vg	x� v
i� +∑q

j=1 w
i
j�cj	v

i� = 0� for i = 1� � � � � p�

wi
j � 0� cj	v

i� � 0� for i = 1� � � � � p j = 1� � � � � q�
wi

jcj	v
i� = 0� for i = 1� � � � � p j = 1� � � � � q�

(13)

The KKT system and (13) are not equivalent. We should not forget the feasibility
constraint (7). But (7) involves an infinite number of inequalities for x. As men-
tioned before, in most applications, the following assumption holds [18, 29, 32].



A SMOOTH NEWTON METHOD FOR SEMI-INFINITE PROGRAMMING 173

ASSUMPTION 1. For any fixed x, the number of local minima of (10) is finite.

This number depends upon x, and is unknown in general. Under Assumption 1,
we may solve the finite system (13) by first finding its solution x, and check if (7)
holds for these finitely many minima of (10) at x. If (7) holds at these points, then x
is a substationary point of the SIP problem. In fact in some cases, it automatically
holds. For example, if g	x� ·� is a concave function, c is convex and p � 1, then
a solution of the finite system (13) is a substationary point of the SIP problem
automatically.
Note that under Assumption 1, omitting (7) may omit some solutions x with

p = 0. But those x are solutions of

�f	x� = 0� (14)

which is in general not a difficult problem. Once we have found some solutions of
(14), we then need to check if (7) holds for these solutions.
In this paper, we reformulate the system (13) into a system of semismooth

equations. Then, we propose a smoothing Newton method to solve the system of
semismooth equations. Under mild conditions, we prove that the proposed method
is globally and superlinearly/quadratically convergent. The advantage of the pro-
posed method is that, unlike discretization methods and reduction based methods
in which, at each iteration, two nonlinear optimization problems have to be solved,
the proposed method only solves a system of linear equations at each iteration.
The proposed method is an extension of smoothing Newton methods for solving

semismooth equations arising from nonlinear programming problems, nonlinear
complementarity problems and variational inequality problems etc.. We refer to [1,
24], a survey paper [23] and references therein for details on smoothing methods.
The organization of the paper is as follows. In the next section, we reformu-

late the system (13) into a system of semismooth equations. After introducing the
concept of a smoothing function, we propose a smoothing Newton method and
discuss some properties of the proposed method in Section 3. In Section 4, we
establish global and superlinear/quadratic convergence of the proposed method.
Numerical results are reported in Section 5. Finally, in Section 6, we discuss a
special case of the method when V is a closed interval in R.

2. A Semismooth Equation Reformulation

In this section, we reformulate the system (13) into a system of semismooth equa-
tions. We first briefly review NCP and semismooth functions.
A function ! � �2 → � is called an NCP function [21] if !	a� b� = 0 if

and only if a � 0� b � 0 and ab = 0. Two well-known NCP functions are the
minimum function

!min	a� b� = min�a� b�
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and the Fischer–Burmeister function [6, 21]

!FB	a� b� =
√

a2 + b2 − a − b� (15)

A locally Lipschitz function F � �n → �p is called semismooth [16, 19, 25] at
x ∈ �n if F is directionally differentiable at x and for all V ∈ &F	x + d� and
d → 0,

F ′	x d� = Vd + o	�d���
where &F is the generalized Jacobian of F in the sense of Clarke [2]. F is called
strongly semismooth [6, 21, 22, 25] at x if F is semismooth at x and for all V ∈
&F	x + d� and d → 0,

F ′	x d� = Vd + O	�d�2��
Both the minimum function and the Fischer–Burmeister function are not smooth
(continuously differentiable), but they are strongly semismooth.
By the use of the Fischer–Burmeister function !FB defined by (15), we may

reformulate (13) as a system of semismooth equations:


�f	x� +∑p
i=1 ui�xg	x� v

i� = 0�
!FB	ui�−g	x� vi�� = 0� for i = 1� � � � � p�

−ui�vg	x� v
i� +∑q

j=1 w
i
j�cj	v

i� = 0� for i = 1� � � � � p�

!FB	w
i
j�−cj	v

i�� = 0� for i=1� � � � � p j = 1� � � � � q�

(16)

It is obvious that if !FB in (16) is replaced by any other NCP function, the equival-
ence between (13) and (16) remains true.
Nonlinear equation (16) transforms the system (13) into a semismooth equation

of dimension n + 	1 + m + q�p. It is then desired to solve it by some smoothing
Newtonmethods. This is the goal of the next two sections. However, we understand
that in appearance,(16) is not “totally" equivalent to (13). It allows the case that

ui = 0� g	x� vi� � 0�

If there is an n + 	1 + m + q�p dimensional vector satisfying (16), we may then
drop the part indexed by i where ui = 0. In this case, we get a solution of (13)
which obviously satisfies (16). Hence, (13) and (16) are equivalent.
We also note that the parameter p depends upon the problem. One possibility

is to use pk = r	xk� at the 	k + 1�th iteration to find xk+1, where r	x� is the
rank of ��xg	x� v� � v ∈ V�. In the latter part of this paper, we will study the
simple case which is in fact rather common in applications, i.e., p is known. For
instance, if Assumption 1 holds and for any fixed x, g	x� ·� is a concave function.
Then p = 0 or 1. Since the solution for p = 0 can be checked by solving (14), as
discussed before, under that additional assumption, a method for solving the case
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p = 1, combining a solution of (14) satisfying (7), will then solve the problem.
Even when p is unknown but small, say p = 2 or 3, we may still try p = 1 first.
If it fails, we may then try p = 2, and so on. For the case when p is unknown and
not small, it will not be in the scope of the present paper.

3. Smoothing Functions and A Smoothing Newton Method

In this section, we first introduce the concept of a smoothing function and then
construct a smoothing function for the semismooth function H defined by (16).
Let , �= 0 be a parameter. We call H, a smoothing function of a semismooth
function H if it is continuously differentiable everywhere and there is a constant
- > 0 independent of , such that

�H,	z� − H	z�� � -,� ∀z�
The basic idea of a smoothingmethod for solving the semismooth equationH	z� =
0 is to generate a sequence �z,k� that are (approximate) solutions of the smooth
equationH,k	z� = 0, such that there exists at least one accumulation point of �z,k�
that, as hoped, is a solution of the semismooth equation H	z� = 0.
Smoothing Newton-like methods have received much attention in solving sem-

ismooth equations arising from the nonlinear complementarity problem, the vari-
ational inequality problem and the KKT system of the nonlinear programming
problem in recent years [1, 7, 12, 14, 20, 23, 24, 36]. We want to develop a
smoothing Newton method for solving smoothing Equations (16) arising from SIP.
We first construct a smoothing function for the semismooth function H defined by
(16).
Let !,

FB � R2 → R be the perturbed Fischer-Burmeister function defined by

!,
FB	a� b� =

√
a2 + b2 + ,2 − 	a + b��

It is obvious that for any , > 0, !,
FB is differentiable everywhere and for each

, � 0, we have

�!,
FB	a� b� − !FB	a� b�� � ,� ∀	a� b� ∈ R2� (17)

In particular, !0
FB	a� b� = !FB	a� b� for all 	a� b� ∈ R2. By direct computation,

we get for every , > 0,

�!,
FB	a� b� = −

(
1− a√

a2 + b2 + ,2
� 1− b√

a2 + b2 + ,2

)
� (18)

&B!FB	a� b� =

−

(
1− a√

a2 + b2
� 1− b√

a2 + b2

)
� ifa2 + b2 �= 0�

�−	/� 0� � 	/ − 1�2 + 	0 − 1�2 = 1�� ifa = b = 0�

(19)
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where &B!FB	z� stands for the B-differential of !FB at z.

&!FB	a� b� =

−

(
1− a√

a2 + b2
� 1− b√

a2 + b2

)
� ifa2 + b2 �= 0�

�−	/� 0� � 	/ − 1�2 + 	1− 0�2 � 1�� ifa = b = 0�

(20)

From equations (18) and (20), it is clear that for every , > 0

�!,
FB	0� 0� ∈ &!FB	0� 0�� (21)

The following lemma further reveals the relation between !,
FB and &!FB.

LEMMA 2. Let �	ak� bk�� be any nonzero sequence converging to some point
	a� b� and �,k� be sequences of positive numbers, which converge to zero. The
relation

lim
k→�

dist	�!
,k
FB	ak� bk�� &!FB	ak� bk�� = 0 (22)

holds if and only if

lim
k→�

,k√
a2k + b2k

= 0� (23)

Proof. By an elementary deduction, we have for any k

dist	�!
,k
FB	ak� bk�� &!FB	ak� bk�� = ��!

,k
FB	ak� bk� − �!FB	ak� bk���

=
∥∥∥( ak√

a2k + b2k + ,2k

− ak√
a2k + b2k

�
bk√

a2k + b2k + ,2k

− bk√
a2k + b2k

)∥∥∥

=
∥∥∥(ak	

√
a2k + b2k + ,2k −

√
a2k + b2k�√

a2k + b2k + ,2k

√
a2k + b2k

�
bk	

√
a2k + b2k + ,2k −

√
a2k + b2k�√

a2k + b2k + ,2k

√
a2k + b2k

)∥∥∥
= ,2k√

a2k + b2k + ,2k

(√
a2k + b2k + ,2k +

√
a2k + b2k

)

= ,̄2k√
1+ ,̄2k

(
1+√

1+ ,̄2k

) � (24)

where ,̄k = ,k/
√

a2k + b2k . Equality (24) implies that (22) holds if and only if ,̄k →
0 as desired. �
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For simplicity, we denote z = 	x� u� v1� � � � � vp� w1� � � � � wp� ∈ Rn+	1+m+q�p

and define some functions on Rn+	1+m+q�p as follows.

L	z� = �f	x� +
p∑

i=1
ui�xg	x� v

i��

3 ,	z� = 	4,
1	z�� � � � � 4

,
p	z��

T �

4,
i 	z� = !,

FB	ui�−g	x� vi��� i = 1� 2� � � � � p�

l	z� = 	l1	z�� � � � � lp	z��
T �

li	z� = −ui�vg	x� v
i� +

q∑
j=1

wi
j�cj	v

i�� i = 1� � � � � p�

6,	z� = 	6,
1	z�

T � � � � � 6,
p	z�

T �T �

6,
i 	z� = 	!,

i1	z�� � � � � !
,
iq	z��

T � i = 1� 2� � � � � p�

!,
ij	z� = !,

FB	w
i
j�−cj	v

i��� i = 1� 2� � � � � p j = 1� 2� � � � � q�

Let

H,	z� =




L	z�
3 ,	z�
l	z�

6,	z�


 (25)

and H = H 0. It is clear that for each , > 0, H, is continuously differentiable
and H is semismooth. Moreover, H is strongly semismooth if f , g and c are twice
Lipschitz continuously differentiable. The system (13) is then reformulated into
the following semismooth equation.

H	z� = 0� (26)

In addition, it follows from (17) that

�H,	z� − H	z�� � -,� ∀z� (27)

where - = n + 	1+ m + q�p.
We turn to computing the Jacobian �H,	z�. By direct computation, we have

�xL	z� = � 2f 	x� +
p∑

i=1
ui�

2
xxg	x� v

i� ∈ Rn×n�

�uL	z� = 	�xg	x� v
i�T �

p
i=1

�= nablaxg	x� v�
T ∈ Rp×n�

�vL	z� =



u1�
2
xvg	x� v

1�
���

up�
2
xvg	x� v

p�


 �= 72	z��

2
vxg	x� v�

T ∈ Rmp×n�

�wL	z� = 0 ∈ Rqp×n�
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where�xg	x� v�= 	�xg	x� v
1�� � � � � �xg	x� v

p�� ∈ Rp×n� 72	z�= diag	uiIm�1�i�p ∈
Rmp×mp and � 2

xvg	x� v� =
(
� 2

xvg	x� v
1�� � � � � � 2

xvg	x� v
p�
)

∈ Rn×mp. Denote for
i = 1� 2� � � � � p; j = 1� 2� � � � � q

a,
i 	z� = 1+ g	x� vi�√

u2i + g	x� vi�2 + ,2
� b,

i 	z� = 1− ui√
u2i + g	x� vi�2 + ,2

0,
ij	z� = 1+ cj	v

i�√
	wi

j�
2 + cj	v

i�2 + ,2
� 8,

ij	z� = 1− wi
j√

	wi
j�
2 + cj	v

i�2 + ,2
�

It is obvious that for every , > 0, inequalities

0 < a,
i 	z� < 2� 0 < b,

i 	z� < 2� 	a,
i 	z� − 1�2 + 	b,

i 	z� − 1�2 < 1

and

0 < 0,
ij	z� < 2� 0 < 8,

ij	z� < 2� 	0,
ij	z� − 1�2 + 	8,

ij	z� − 1�2 < 1

hold for any z, every i = 1� � � � � p and j = 1� � � � � q. We also have

�x3
,	z� = �xg	x� v�diag	a

,
i 	z��

�= �xg	x� v�7
,
1	z� ∈ Rn×p�

�u3
,	z� = −diag	b,

i 	z���

�v3
,	z� = diag	�vg	x� v

i��7,
1	z� ∈ Rmp×p�

�w3
,	z� = 0 ∈ Rqp×p�

where 7,
1	z� = diag	a,

i 	z��. Moreover, we have

�xli	z� = −ui�
2
vxg	x� v

i� ∈ Rp×m�

�uli	z� = −diag	�vg	x� v
i�T � ∈ Rp×mp�

�vli	z� =
(
0� � � � � 0�−ui�

2
vvg	x� v

i� +
q∑

j=1
wi

j�
2cj	v

i�� 0� � � � � 0
)T

�= 	0� � � � � 0� Mii	z�� 0� � � � � 0
)T ∈ Rmp×m

�wli	z� =
(
0� � � � � 0� �c	vi�� 0� � � � � 0

)T ∈ Rqp×m�

where Mii	z� = −ui�
2
vvg	x� v

i� + ∑q
j=1 w

i
j�

2cj	v
i� ∈ Rp×p and �c	vi� =

	�c1	v
i�� � � � � �cq	v

i�� ∈ Rp×q . The above equations imply

�xl	z� = −	u1�
2
vxg	x� v

1�� � � � � up�
2
vxg	x� v

p�� = −� 2
xvg	x� v�72	z��

�ul	z� = −7,
1	z�diag	�vg	x� v

i�T ��

�vl	z� = diag	Mii	z��
�= M	z��

�wl	z� = diag
(
�c	vi�T

)
�
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where for vectors or matrices p1� p2� � � � � pn, the matrix diag 		pi�T � is defined by

diag		pi�T � =




	p1�T

	p2�T

� � �

	pn�T


 �

We also have

�x6
,
j 	v� w� = 0 ∈ Rn×q� �u6

,
j 	v� w� = 0 ∈ Rm×q�

�v!
,
ij	z� = 	0� � � � � 0� 0,

i�j	v� w��cj	v
i�T � 0� � � � � 0�T ∈ Rmp×q�

�w!
,
ij	z� = 	0� � � � � 0�−8,

ij	z�� 0� � � � � 0�
T ∈ Rqp×q

�v6
,
i 	v� w� =




0 · · · 0
���

���
0 · · · 0

0,
i1�c1	v

i� � � � 0,
iq�cq	v

i�

0 · · · 0
���

���
0 · · · 0




=




0
���
0

�c	vi�
0
���
0




B,
i 	z� ∈ Rmp×q�

where B,
i 	z� = diag	0,

i1	z�� � � � � 0
,
iq	z��.

�w6
,
i 	v� w� =




0 0 · · · 0
���

���
���

−8,
i1	z� 0 · · · 0
0 −8,

i2	z� · · · 0
���

���
� � �

���
0 0 · · · −8,

iq	z�

0 0 · · · 0
���

���
���

0 0 · · · 0




=




0
���
0

diag	−8,
ij	z��

q
j=1

0
���
0




∈ Rqp×q�

Hence

�x6
,	z� = 0�

�u6
,	z� = 0�

�v6
,	z� = diag

(
�c	vi�B,

i 	z�
) �= diag	Ci	z���

�w6
,	z� = −diag

(
8,

ij	z�
)
�
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From the above argument, we get the expression of �H,	z� as follows.

�H,	z� =




�xL	z� �x3
,	z� �xl	z� �x6

,	z�

�uL	z� �u3
,	z� �ul	z� �u6

,	z�

�vL	z� �v3
,	z� �vl	z� �v6

,	z�

�wL	z� �w3,	z� �wl	z� �w6,	z�




=




�xL	z� �xg	x� v�7
,
1	z� −� 2xvg	x� v�72	z� 0

�xg	x� v�
T −diag	b,

i 	z�� −diag	�vg	x� v
i�T � 0

72	z��
2
xvg	x� v�

T diag	�vg	x� v
i��7,

1	z� M	z� diag	Ci	z��

0 0 diag
(
�c	vi�T

)
−diag	8,

ij 	z��


 � (28)

We are going to state the steps of a smoothing Newton method. For simplicity,
we use Hk, �Hk etc. to denote H,k and �H,k etc. Let

;k
i =

√
	u2i + g	x� vi�2�z=zk

� ;k
ij =

√
		wi

j�
2 + cj	v

i�2�z=zk

J 1k = �i � ;k
i �= 0� i = 1� � � � � p��

J 2k = �	i� j� � ;k
ij �= 0� i = 1� � � � � n� j = 1� � � � � q�

and

Jk = J 1k ∪ J 2k ;k = min�	;k
i � i ∈ J 1k �� 	;k

ij� i� j ∈ J 2k ���

Here and below, we use zk instead of z
k to denote the kth iterate vector.

To make a smoothing Newton method be globally and superlinearly convergent,
it is important to update the parameter ,k in a proper way. Intuitively, a reasonable
choice of ,k is to let it satisfy

lim
k→�

dist	�Hk	zk�� &CH	zk�� = 0� (29)

Here, for a vector-valued function 8 = 	81� � � � � 8m�T , the notation &C8	z� is
specified by

&C8	x� = &81	x� × &82	x� × · · · × &8m	x��

A general rule of how to let ,k satisfy (29) has been discussed in [1]. In our
algorithm, by means of Lemma 2, we specify the choice of ,k such that (29) holds.

ALGORITHM 3 (A Smoothing Newton Method for SIP).

Initial Given constants / ∈ 	0� 1/2�, =� > ∈ 	0� 1� and ? ∈ 	0� 	1 − /�/2�.
Choose an initial point z0 ∈ Rn+	1+m+q�p and initial parameter ,0 ∈ 	0� /

2-�H	z0���.
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Step 1 Solve linear equation

H	zk� + �Hk	zk�p = 0� (30)

Let pk be a solution of (30).
Step 2 Find the smallest nonnegative integer m such that the following in-
equality holds.

�Hk	zk + =mpk��2 − �Hk	zk��2 � −2?=m�H	zk��2� (31)

Letmk be the smallest nonnegative integer satisfying (31) and /k = =mk .
Step 3 Let the next iterate be zk+1 = zk + /kp

k.
Step 4 Stop if H	zk+1� = 0.
Step 5 If �H	zk+1�� � /�H	zk�� + -/−1,k, let ,k+1 = ,k. Otherwise, choose
a positive ,k+1 that satisfies

,k+1 � min�
1
2
,k� ;k+1,k�

/

2-
�H	zk+1���� (32)

Let k �= k + 1 and go to Step 1.

Denote

K = �0� ∪ �k � �H	zk�� < /�H	zk−1�� + -/−1,k−1� (33)

The following lemma summarizes some properties of the algorithm.

LEMMA 1 Let �zk� and �,k� be generated by Algorithm 3. Then the following
statements hold.
(i) The positive sequence �,k� is nonincreasing and satisfies

-,k � /�H	zk��� ∀k = 1� 2� � � � � (34)

(ii) For every k ∈ K,

,k �
1
2
,k−1� 0k

�= M,k/;
k � ,k−1�

and

dist	�Hk	zk�� &CH	zk�� � -0k � -,k−1� (35)

where - = n + 	1+ m + q�p and M � sup�1� ��g	x� v��� ��c	v���.
Proof. Inequality (34) is straightforward. We only prove (35).
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Recall by (25) that

H,	z� =




L	z�
3 ,	z�
l	z�

6,	z�


 � H	z� = H 0	z� =




L	z�
3 0	z�
l	z�

60	z�


 �

We verify (35) by showing that inequality

dist 	�H,
i 	zk�� &H

0
i 	zk�� �

M,k

2;k
� 0k (36)

holds for every i. For simplicity, we omit subscripts k in the proof.
For each i = 1� 2� � � � � p, we have

40
i 	z� = !FB	ui�−g	x� vi�� =

√
u2i + g	x� vi�2 − 	ui − g	x� vi���

By a direct computation, we get

&x4
0
i 	z� =



(
1+ g	x� vi�√

u2i + g	x� vi�2

)
�xg	x� v

i�� if u2i + g	x� vi�2 �= 0�

�=�xg	x� v
i� � 0 � = � 2�� if u2i + g	x� vi�2 = 0�

It is clear that if u2i + g	x� vi�2 = 0, then �x4
,
i 	z� ∈ &x4

0
i 	z�, which implies

dist 	�4,
i 	zk�� &4

0
i 	zk�� = 0�

If u2i + g	x� vi�2 �= 0, we get

dist 	�x4
,
i 	z�� &x4

0
i 	z�� = ��x4

,
i 	z� − �x4

0
i 	z��

=
∣∣∣ 1√

u2i + g	x� vi�2 + ,2
− 1√

u2i + g	x� vi�2

∣∣∣�g	x� vi����xg	x� v
i��

= ,2�g	x� vi����xg	x� v
i��√

u2i + g	x� vi�2 + ,2
√

u2i + g	x� vi�2
(√

u2i + g	x� vi�2 + ,2 +√
u2i + g	x� vi�2

)

�
��xg	x� v

i��,
2
√

u2i + g	x� vi�2
�

M,

2;
� 0�

Similarly, we have

dist	�u4
,
i 	z�� &u4

0
i 	z�� = 0�

if u2i + g	x� vi�2 = 0, and

dist 	�u4
,
i 	z�� &u4

0
i 	z�� �

,

2
√

u2i + g	x� vi�2
�

M,

2;
� 0�
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if u2i + g	x� vi�2 �= 0; and

dist	�vi4
,
i 	z�� &vi4

0
i 	z�� = 0�

if u2i + g	x� vi�2 = 0, and

dist 	�vi4
,
i 	z�� &vi4

0
i 	z�� �

��vig	x� v
i��,

2
√

u2i + g	x� vi�2
�

M,

2;
� 0�

if u2i + g	x� vi�2 �= 0.
The above argument shows that for each i = 1� 2� � � � � p, we always have

dist 	�4,
i 	zk�� &4

0
i 	zk�� �

M,k

2;k
� 0k�

Similarly, we can deduce that for each i = 1� 2� � � � � p and each j = 1� 2� � � � q, it
holds that

dist 	�!,
ij	zk�� &!

0
ij	zk�� �

��c	vk��,k

2;k
�

M,

2;
� 0�

For any other i, we obviously have �H,
i 	z� = �Hi	z�, which implies

dist 	�H,
i 	zk�� &H

0
i 	zk�� = 0 � 0k�

Summarizing the above discussion, it is not difficult to get (35). �

4. Global and Superlinear Convergence of the Smoothing Newton Method

In this section, we prove the global and superlinear convergence of Algorithm 3.
To this end, we need the following assumptions.

ASSUMPTION 4. (i) The level set

A
�= �z � �H	z�� �

1+ 2/
1− 2/�H	z0��� (37)

is bounded.
(ii) The functions f � g and c are twice continuously differentiable on A.
(iii) For every , ∈ 	0� ,0�, the matrix �H,	z� is nonsingular for any z ∈ A.

Assumption 5 (iii) will be justified under further assumptions later in this sec-
tion. We will also show that the iterate sequence �zk� generated by Algorithm 3
remains in the level setA.
The following lemma shows that the proposed method is well defined.
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LEMMA 2 Algorithm 3 is well defined.
Proof. It suffices to show that for every k, the line search step terminates finitely.

Hk	zk�
T�Hk	zk�

Tpk = −Hk	zk�
TH	zk� = −�H	zk��2

+ 	H	zk� − Hk	zk��
TH	zk�

� −�H	zk��2 + -,k�H	zk�� � −	1− /��H	zk��2
� −?�H	zk��2�

This shows that inequalities (31) are satisfied for allm sufficiently large, and hence
the line search in Step 3 terminates finitely. �

4.1. GLOBAL CONVERGENCE

LEMMA 3. Let �ak� and �,̄k� be positive sequences such that for some constant
/ ∈ 	0� 1�

ak � /ak−1 + ,̄k−1� k = 1� 2� � � � � (38)

If
∑�

k=0 ,̄k<�, then �ak� converges to zero. If in addition, ,̄k+1 � =,̄k for all k with
some constant = ∈ 	0� 1�, then we have for all k > 0

ak �

{(
a0 + 1

�= − /� ,̄0
)
rk� if= �= /�

	a0 + k,̄0/
−1�/k� if = = /�

(39)

where r = max�/� =�.
Proof. By the assumption that

∑�
k=0 ,̄k < �, it is not difficult to show from

(38) that �ak� satisfies the Cauchy condition and hence converges. Taking limits
in both sides of (38) yields limk→� ak = 0. Suppose further that ,̄k+1 � =,̄k. It
follows from (38) that for each k > 0

ak � /ak−1 + ,̄k−1

� /2ak−2 + /,̄k−2 + ,̄k−1

� /ka0 +
k−1∑
j=0

/k−j−1,̄j

� /ka0 +
k−1∑
j=0

/k−j−1=j,̄0

=

/ka0 + /k−1 1− 	=//�k

1− 	=//�
,̄0� if = �= /�

	a0 + k,̄0/
−1�/k� if = = /�

The last equality yields (39). �
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LEMMA 4. If the index set K defined by (33) is infinite, then the sequences �,k�,
�0k� and �H	zk�� converge to zero. Moreover, we have

lim
k→��k∈K

dist	�Hk	zk�� &CH	zk�� = 0� (40)

Proof. That the sequence �,k� converges to zero follows from Lemma 3 (i) and
(ii) immediately. Equality (40) then follows from (35). It remains to verify that
H	zk� converges to zero. Let K consist of k0 = 0 < k1 < k2 < · · · . By Step
5, we have ,k = ,kj

for each k satisfying kj � k < kj+1, which in turn, implies
Hk	z� = Hkj 	z� for any z and every k satisfying kj � k < kj+1. By Step 2, we
have for every kj � k < kj+1

�Hk	zk�� = �Hkj 	zk�� � �Hkj 	zk−1�� � · · · � �Hkj 	zkj
��� (41)

We then get

�H	zkj+1�� � /�H	zkj+1−1�� + -/−1,kj+1−1

� /�Hkj 	zkj+1−1�� + /�Hkj 	zkj+1−1� − H	zkj
�� + -/−1,kj

� /�Hkj 	zkj
�� + -	/ + /−1�,kj

� /�H	zkj
�� + -	2/ + /−1�,kj

� (42)

Let aj = �H	zkj
�� and ,̄j = -	2/ + /−1�,kj

. Then we have ,̄j � 1
2 ,̄j−1 for all

j � 1. By using Lemma 6, we claim that the subsequence ��H	zkj
��� converges

to zero.
For any k, let kj be the largest index in K such that kj � k. It then follows from

(41) that

�H	zk�� � �Hkj 	zk�� + -,kj
� �Hkj 	zkj

�� + -,kj
� (43)

This implies that the sequence �H	zk�� converges to zero. �
The next theorem establishes the global convergence of Algorithm 3.

THEOREM 5. The sequence �zk� generated by Algorithm 3 is contained in A.
Moreover, we have

lim
k→�

H	zk� = 0� (44)

Consequently, every accumulation point of �zk� is a solution of H	z� = 0.
Proof. For any k > 0, let kj be the largest index in K such that kj � k. Note

that / < 1/2. From Lemma 6 and (42), we have for any k � kj ,

�H	zkj
�� �

(
�H	z0�� +

1
1/2− /

-	2/ + /−1�,0
)
	
1
2
�j

�
(
1+ /

	1/2− /�2-
-	2/ + /−1�

)
	
1
2
�j�H	z0��

=
(
1+ 1+ 2/2

1− 2/
)
	
1
2
�j�H	z0���
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where the second inequality follows from the choice of ,0. This together with (43)
implies

�H	zk�� �
(
1+ 1+ 2/2

1− 2/
)
	
1
2
�j�H	z0�� + 	

1
2
�j-,0

�
(
1+ 1+ 2/2

1− 2/ + /

2

)
	
1
2
�j�H	z0��

�
(
1+ 1+ 2/

1− 2/
)
	
1
2
�j�H	z0���

This shows that �zk� ⊂ A.
We turn to verifying (44). By Lemma 7, it suffices to show that the index set

K defined by (33) is infinite. For the sake of contradiction, we assume that K is
finite. By Algorithm 1, there is an index k̄ such that ,k = ,k̄

�= ,̄ for all k �
k̄. Let H̄ = H,̄. It then follows from Step 5 of Algorithm 1 that �H	zk�� �
/�H	zk−1�� + -,̄ � -,̄ > 0 holds for all k � k̄.
By the line search condition (31), we have

/k�H	zk��2 � �H̄	zk��2 − �H̄	zk+1��2�
Summarizing these inequalities yields that /k�H	zk��2 → 0 as k → �. However,
the sequence ��H	zk��� is bounded away from zero. We claim that the sequence
�/k� goes to zero as k goes to infinity. By the line search rule, when k is sufficiently
large, inequality (31) does not hold for/′

k

�= /k/=. That is, the following inequality
holds for all k sufficiently large.

�H̄	zk + /′
kp

k��2 − �H̄	zk��2 > −2?/′
k�H	zk��2� (45)

Since �zk� is bounded, there is a subsequence �zk�k∈K1
converging to some point

z̄ ∈ A. By the singularity assumption of �H̄	z̄�, the linear equation (30) implies
that the sequence �pk�k∈K1

is also bounded. Without loss of generality, we may
assume that �pk�k∈K1

converges to some vector p̄. By taking limits in both sides of
(30) as k goes to infinity with k ∈ K1, we get

�H̄	z̄�p̄ = −H	z̄�� (46)

Dividing by /′
k and then letting k go to infinity with k ∈ K1 in both sides of (45),

we get

H̄	z̄�T�H̄	z̄�p̄ � −2?�H	z̄��2�
The last inequality together with (46) implies

H̄	z̄�TH	z̄� � 2?�H	z̄��2�
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Further analyzing the last inequality, we deduce

2?�H	z̄��2 � �H	z̄��2 − H	z̄�T 	H	z̄� − H̄	z̄�� � �H	z̄��2 − -,̄

�H	z̄�� � 	1− /��H	z̄��2�

Since ? ∈ 	0� 	1 − /�/2�, the last inequality implies H	z̄� = 0, which is a
contradiction. The contradiction shows that K must be infinite. The proof is then
complete. �
Theorem 5 shows that under appropriate conditions, every accumulation point

of �zk� is a solution of H	z� = 0. If some additional assumptions are further
assumed, the whole sequence �zk� converges to that solution. Moreover, the con-
vergence rate is superlinear. These are the goals of the next subsection.

4.2. SUPERLINEAR CONVERGENCE

THEOREM 6. Let �zk� be generated by Algorithm 1. If there is an accumulation
point z∗ of �zk�k∈K at which every matrix of &CH	z∗� is nonsingular, then the
whole sequence �zk� converges to z∗. Moreover, the convergence is superlinear. If
in addition, the functions f , g and c are twice Lipschitz continuously differentiable,
then the convergence rate is quadratic.
Proof. Let �zk�k∈K0

⊂ �zk�k∈K converge to z∗. By Lemma 7 (ii) and the as-
sumption that every matrix in &CH	z∗� is nonsingular, when k is sufficiently large,
�Hk	zk� is nonsingular and there is a constant M > 0 such that ��Hk	zk�

−1� �
M holds for all k ∈ K0 sufficiently large. Let Vk ∈ &CH	zk� satisfy dist	�Hk	zk��

&CH	zk�� = ��Hk	zk� − Vk�. We get for all k sufficiently large

�zk + pk − z∗� = ��Hk	zk�
−1	H	zk� − �Hk	zk�	zk − z∗���

� M
(
�H	zk� − H	z∗� − Vk	zk − z∗�� +

�	Vk − �Hk	zk��	zk − z∗��
)

= o	�zk − z∗��� (47)

Again, by the nonsingularity of elements in &CH	z∗�, there is a constant B > 0
such that �H	zk�� � B�zk − z∗�. On the other hand, the Lipschitz continuity of
H implies �H	zk + pk�� = O	�zk + pk − z∗�� = o	�zk − z∗�� = o	�H	zk���.
By Step 5 and the definition of K, -,k � 1

2/�H	zk�� for all k ∈ K0 ⊂ K, which
implies

�Hk	zk�� � �H	zk�� − -,k � 	1− 1
2
/��H	zk���
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Therefore, we have

�Hk	zk + pk��2 − �Hk	zk��2 �
(
�H	zk + pk�� + -,k

)2 − 	1− 1
2
/�2�H	zk��2

�
(
o	�H	zk��� +

1
2
/�H	zk��

)2 − 	1− 1
2
/�2

�H	zk��2

= −
(
	1− 1

2
/�2 − /2

4

)
�H	zk��2 + o	�H	zk��2�

= −	1− /��H	zk��2 + o	�H	zk��2��
Since? ∈ 	0� 	1−/�/2�, the last equality implies that when k ∈ K0 is sufficiently
large, the unit step is always accepted. Therefore, by the fact that �H	zk + pk�� =
o	�H	zk���, we have �H	zk+1�� = o	�H	zk���. Consequently, �H	zk+1�� �
=�H	zk�� � =�H	zk�� + -/−1,k. This shows that k + 1 ∈ K0. By means of
the induction principle, we claim that the index set K0 contains all except finitely
many indices. Thus the sequence �zk� converges to z∗. The superlinear convergence
follows from (47).

If f , g and c are twice Lipschitz continuously differentiable, then H is strongly
semismooth. In a way similar to (47), we can deduce that there is a constant m̄ > 0
such that the inequality �zk + pk − z∗� � M̄�zk − z∗�2 holds for all k ∈ K0

sufficiently large. Therefore, the convergence rate is quadratic. �

4.3. REGULARITY

We conclude this section by giving a sufficient condition for �H,	z� to be nonsin-
gular. For z = 	x� u� v� w� ∈ Rn+	1+m+q�p, let Q = �1� 2� · · · � q� and P =
�1� 2� · · · � p�. We make the following assumptions:

ASSUMPTIN 5 (i) �xL	z� is positive semidefinite. Moreover, it is positive def
inite in the null space of Span(�xg	x� v�

T). That is, dT�xL	z�d > 0 for all d ∈ Rn

satisfying �xg	x� v�
Td = 0.

(ii) �vli	z� is positive semidefinite. Moreover, it is positive definite in the null space
of Span(�c	vi�T). That is dTMii	z�d > 0 for all d satisfying �c	vi�Td = 0.

Note that Assumption 5 (i) and (ii) are stronger than the second order optimality
conditions for the first and the second level programs, respectively. However, both
conditions do not need the linear independence of active constraint gradients.
The following Theorem shows that Assumption 5 is sufficient for �H,	z� to be

nonsingular.

THEOREM 7. Let Assumption 5 hold. Then �H,	z� is nonsingular for every , >
0.
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Proof. From the expression of �H,	z�, it suffices to show that the following
matrix Q,	z� is nonsingular.

Q,	z� �




�xL	z� −�xg	x� v� −� 2xvg	x� v�72	z� 0
�xg	x� v�

T diag	a,
i 	z�

−1b,
i 	z�� −diag	�vg	x� v

i�T � 0
72	z��

2
xvg	x� v�

T −diag	�vg	x� v
i�� M	z� −diag	�c	vi��

0 0 −diag
(
�c	vi�T

)
diag	0,

ij 	z�
−18,

ij 	z��


 �

Let d = 	d1� d2� d3� d4� be a solution of Q
,	z�d = 0. This means


�xL	z�d1 − �xg	x� v�d2 − � 2xvg	x� v�72	z�d3 = 0�

�xg	x� v�
T d1 + diag	a,

i 	z�
−1b,

i 	z��d2 − diag	�vg	x� v
i�T �d3 = 0�

72	z��
2
xvg	x� v�

T d1 − diag	�vg	x� v
i��d2 + M	z�d3 −diag	�c	vi��d4 = 0�

−diag
(
�c	vi�T

)
d3 +diag	0,

ij 	z�
−18,

ij 	z��d4 = 0�

(48)

It then follows that

dT
1 �xL	z�d1 + dT

2 diag	a
,
i 	z�

−1b,
i 	z��d2 + dT

3 �vl	z�d3 + dT
4

diag	0,
ij	z�

−18,
ij	z��d4 = 0� (49)

Since �xL	z� and �vl	z� are positive semidefinite, and diag	a
,
i 	z�

−1b,
i 	z�� and

diag	0,
ij	z�

−18,
ij	z�� are positive definite, we get d

T
1 �xL	z�d1 = 0, dT

3 �vl	z�d3 =
0, d2 = 0 and d4 = 0. Therefore, we get from (48){

�xg	x� v�
Td1 − diag	�vg	x� v

i�T �d3 = 0�

diag
(
�c	vi�T

)
d3 = 0�

(50)

The last equation of (50) together with Assumption 5 (ii) implies d3 = 0. It then
follows from the first equation of (50) and Assumption 5 (i) that d1 = 0. This
shows that zero is the unique solution of Q,	z�d = 0. Consequently, Q,	z� is
nonsingular. The proof is complete. �
A semismooth function F is said to be CD-regular at z if every element in &F	x�
is nonsingular. If z is a solution of (26), Qi et al. [27] gave a sufficient condition
forH to be CD-regular at z. We give the conditions and conclusion as follows. For
details, see [27].

ASSUMPTION 6 (i) ui > 0 ∀i = 1� 2� � � � � p.
(ii) The vectors �xg	x� v

i�, i = 1� 2� � � � � p are linearly independent.
(iii) For each i = 1� 2� � � � � p, the vectors �cj	v

i�, j ∈ I	vi� � �j � cj	v
i� = 0�

are linearly independent.
(iv) wi

j − cj	v
i� �= 0, ∀i ∈ P and j ∈ Q.

(v) For all 	d� ;1� � � � � ;p� ∈ G	x� v�\�0�,

dT�xL	z�d +
p∑

i=1
;T

i �vl	x� ui� v
i� wi�;i > 0�



190 D.-H. LI ET AL.

where G	x� v� be the set of all 	d� ;1� · · · � ;p� ∈ Rn × Rmp satisfying

dT�xg	x� v
i� − ;T

i �vg	x� v
i� = 0 for i ∈ P�

and

;T
i �cj	v

i� = 0 for i ∈ P� j ∈ I	vi��

The following theorem comes from [27].

THEOREM 8. Suppose that z	x� u� v� w� is a solution of (26) and satisfies the con-
ditions of Assumption 6. Then H is CD-regular at z.

5. Numerical Results

We realize that the parameter p depends upon the problem. In implementing the
algorithm, we consider the simple case in which p is known. This is in fact rather
common in applications. For instance, if Assumption 1 holds and for any fixed x,
g	x� ·� is a concave function. Then p = 0 or 1. Even when p is unknown but small,
say p = 2 or 3, we may try p = 1 first. If it fails, we may then try p = 2, and
so on. In the following, we shall first give three examples with p = 1, and one
example with p = 2. (The case that p is unknown and not small will be studied in
future research.)
To illustrate the computational behavior of the proposed algorithm in Section 3,

it was then implemented in MATLAB (Version 6.0.0.88 Realse 12) and run on a
COMPUCONPC (Pentium II/300 64MB/4.3 GB) for the following examples from
[3]. These examples were also being used in [27]. Throughout the computational
experiments, the parameters used in the algorithm were = = 0�5, / = 0�05, ,0 =
10−8� and ? = 10−4. We will terminate our iteration when �H	zk�� < 10−6.
The numerical results are summarized in Table 1, where Iter. denotes the number
of iterations, Fun. Evalu. the number of function evaluations, xk and vk the final
iterate and f 	xk� the function value of f at the final iterate xk.

EXAMPLE 7 f 	x� = 2�25 exp	x1� + exp	x2�� g	x� v� = v − exp	x1 + x2�� V =
F0� 1G�p = 1, x0 = 	−1�5� 0�T , v0 = 0.

EXAMPLE 8 f 	x� = x21 + x22 + x23� g	x� v� = x1 + x2 exp	x3v� + exp	2v� −
2 sin	4v�� V = F0� 1G. p = 1, x0 = 	0� 0�−0�5�T , v0 = 0.

EXAMPLE 9 f 	x�= 	x1− 2x2 + 5x22 − x32 − 13�2 + 	x1 − 14x2 + x22 + x32 − 29�2,
g	x� v�= x21 + 2x2v2 + exp	x1 + x2�− exp	v�� V = F0� 1G� p= 1, x0 = 	0�−2�T ,
v0 = 0.

EXAMPLE 10 f 	x� = 1
3x

2
1 + 1

2x1 + x22, g	x� v� = 	1− x21v
2�2 − x1v

2 − x22 + x2,
V = F0� 1G� p = 2, x0 = 	0� 0�T , v01 = 0�5, v02 = 1.
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Table 1. Results for Algorithm 3

Example p Iter. Fun. Evalu. xk f 	xk�

1 1 3 22 (-4.05e-01,4.05e-01) 3.00e+00
2 1 5 39 (-2.13e-01,-1.36e+00,1.85e+00) 5.33e+00
3 1 3 26 (7.20e-01,-1.45e+00) 9.72e+01
4 2 2 22 (-7.50e-01,-6.18e-01) 1.94e-01

6. A Special Case

This section considers a special case where V is an closed interval in R. Without
loss of generality, let V = F0� 1G. SIP with this V has been studied by many authors
(see [13] and references therein). It is obvious that Algorithm 3 can be applied to
solve this problem directly. Taking into account the particular structure of V , we
are going to develop a smoothing Newton method that is particularly useful for this
problem.
We rewrite the box constraint t ∈ F0� 1G in two inequality constraints t � 1 and

−t � 0. Since these two constraint functions are linear, if g	x� ·� is concave, the
KKT points of (10) are global solutions without additional assumption on the inner
problem. When V = F0� 1G, the KKT system of (10) is as follows.


−g′

t	x� t� + w1 − w2 = 0�
min�w1� 1− t� = 0�
min�w2� −t� = 0�

(51)

Consequently, the KKT system of (1) is written as


�f	x� +∑p
i=1 ui�xg	x� ti� = 0�

ui � 0� g	x� ti� � 0� for i = 1� � � � � p�
uig	x� ti� = 0� for i = 1� � � � � p�

−g′
t	x� ti� + wi

1 − wi
2 = 0� for i = 1� � � � � p�

min�w1� 1− ti� = 0� for i = 1� � � � � p�
min�w2� −ti� = 0� for i = 1� � � � � p�

(52)

By using the mid function, system (51) can be rewritten as a compact form

!	x� t�
�= mid�t� −g′

t	x� t�� t − 1� = 0� (53)

where mid�a� b� c� denotes the median value of scalars a� b and c. Therefore, the
KKT system (52) can be reformulated as a system of nonlinear equations.


�f	x� +∑p

i=1 ui�xg	x� ti� = 0�
!FB	ui� −g	x� ti�� = 0� for i = 1� � � � � p�

!	x� ti� = 0� for i = 1� � � � � pn�
(54)
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where !FB is the Fischer–Burmeister function. Compared with (52), system (54)
has less equations.
The function ! is also strongly semismooth if g is twice continuously differ-

entiable as a function of t, and hence Equation (54) is a system of semismooth
equations. It is then not difficult to develop a smoothing Newton method in a way
similar to previous section.
Let = � R → R be a continuous density function with a bounded absolute mean,

that is,∫ �

−�
�s�=	s�ds < ��

Then the Gabriel-Moré smoothing function is defined by

!,
GM	x� t� =

∫ �

−�
mid�t� t − 1� g′

t	x� t� − ,2s�=	s�ds� (55)

TheGabriel-Moré smoothing function contains, as a special case, the Chen-Harker-
Kanzow-Smale smoothing function, which corresponds to the density function

=	s� = 1
	s2 + 1�3/2 �

It has been shown that for every , > 0, !,
GM	x� ·� is continuously differentiable

everywhere. Moreover, the function !,
GM possesses similar properties as those of

!,
FB. There is no difficulty to propose a smoothing Newton method for solving
(54) by using the Gabriel–Moré smoothing function or the Chen–Harker–Kanzow–
Smale smoothing function. The related global and superlinear convergence of the
method can be proved in a way similar to Section 4. We omit the details.
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